# MIVisionX ONNX Model Validation
## Usage:
MIVisionX-WinML-Validate.exe [options] --m <ONNX.model full path>
--i <model input tensor name>
--o <model output tensor name>
--s <output tensor size in (n,c,h,w)>
--l <label.txt full path>
--f <image frame full path>
--d <Learning Model Device Kind <DirectXHighPerformance>> [optional]
MIVisionX ONNX Model Validation Parameters
--m/--model -- onnx model full path [required]
--i/--inputName -- model input tensor name [required]
--o/--outputName -- model output tensor name [required]
--s/--outputSize -- model output tensor size <n,c,h,w> [required]
--l/--label -- label.txt file full path [required]
--f/--imageFrame -- imageFrame.png file full path [required]
--d/--deviceKind -- Learning Model Device Kind <0-4> [optional]
0 - Default
1 - Cpu
2 - DirectX
3 - DirectXHighPerformance
4 - DirectXMinPower
MIVisionX ONNX Model Validation Options
--h/--help -- Show full help
Sample
Get ONNX models from ONNX Model Zoo
Sample - SqeezeNet
- Download the SqueezeNet ONNX Model
- Use Netron to open the model.onnx
- Look at Model Properties to find Input & Output Tensor Name (data_0 - input; softmaxout_1 - output)
- Look at output tensor dimensions (n,c,h,w - [1,1000,1,1] for softmaxout_1)
- Use the label file - Labels.txt and sample image - car.JPEG to run the MIVisionX WinML Validation
- Use –d 0 if only CPU available, else use –d 3 for GPU inference
MIVisionX-WinML-Validate.exe [options] --m \full-path-to-model\model.onnx
--i data_0
--o softmaxout_1
--s 1,1000,1,1
--l \full-path-to-labels\Labels.txt
--f \full-path-to-labels\car.JPEG
--d 3 [optional]